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Abstract The recent growth in research access to confidential government microdata has prompted 

the development of more general 'output-based statistical disclosure control' (OSDC) methods which 

go beyond tabular protection. Central to OSDC is the concept of 'safe/unsafe statistics', allowing 

researchers and facility owners to make informed judgments about the types of research output 

that pose a disclosure risk. While increasingly accepted in specialist environments, in the wider 

community this novel approach causes some concern: how can 'safe' be unconditional? This paper 

therefore demonstrates the new approach using linear regression, a key research output, as an 

example. In doing so, the paper reconsiders the objectivity of SDC decision-making, arguing that 

‘safety’ be explicitly acknowledged as a relative concept. 
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1. Introduction 

In the last decade or so, a major growth area in the social science research has been driven by the 

increasing availability of confidential data from government sources for research through controlled 

environments. The growth in controlled environments such as research data centres (RDCs) enables 

researchers to access data at previously unreleased levels of detail, as well as linking datasets. One 

particular factor has been the growth of remote access systems: since the creation in 2002 in 

Denmark of the first remote RDC designed for general access to confidential government data, 

remote RDCs have been set up in many European countries, North and South America, and Oceania; 

the latter has also been investing in remote job systems. The UK alone has two national remote RDC 

networks for general purpose research (that is, not tied to any particular type of data or research) 

and is in the process of building a third to improve research access to administrative government 

data. 

This expansion in research access to confidential data causes problems for facility owners. 

Traditionally, statistical disclosure control (SDC) has focused on protection of tabular data and on 

creating safe microdata; these are the core outputs of National Statistical Institutes (NSIs) which 

drive much, although not all, of the research in this field. However, the statistical outputs produced 

by researchers cover a much wider variety of statistics: regressions, odds ratios, factor models, 

kernel densities, and so on. Even the magnitude and frequency tables that researchers produce are 

likely to be different: they are more often used to illustrate characteristics of the data selected for 

analysis, and hence reflect subjective preferences for particular observations. 

Whilst some statisticians considered confidentiality of non-tabular outputs (eg Gomatam et al, 2005; 

Corscadden et al, 2006), it is clear that there was no systematic approach to checking research 

outputs for disclosure.  This led to proposals for a field of ‘output SDC’ (OSDC) to counterpoint the 

‘input SDC’ of data anonymisation, with the aim of generating a framework within which all types of 

output could be analysed and classified; Ritchie (2007) provides an early summary of the problem. 

Central to OSDC is the concept of 'safe/unsafe statistics' (Ritchie, 2007 and 2008). A 'safe statistic' is 

an inherently non-disclosive statistical output, whereas an 'unsafe statistic' means that the output in 

question can only be asserted as non-disclosive in a specific context. The successful classification of 

outputs into unsafe and safe statistics has significant resource implications for the researcher and 

the facility owner, and has proved its effectiveness in a number of settings; since 2010 it has been 

Eurostat recommended practice for OSDC (see Brandt et al, 2010). 

However, to date only a relatively small number of outputs have been classified, largely because 

classification of a core set of outputs was done by those behind the original concepts. Those coming 

later to this approach have tended to take these classifications for granted. Moreover, the novelty of 

the approach has caused some concern to those familiar only with more traditional approaches: 

how can a definition of 'safe' be unconditional? As Ritchie (2014) notes, uncertainty tends to lead to 

the rejection of novelty. 

This paper therefore demonstrates how the classification is determined, taking the example of a 

linear regression, a key output for researchers. As part of this process, the paper demonstrates the 

essentially subjective nature of all SDC and argues for a more realistic perspective costs and benefits 

of data protection. 



The next section defines the mean of ‘safe/unsafe statistics’, and the classification process in outline. 

Section 3 applies this approach to linear regression: it explains the role of functional form as an 

underlying principle, it shows how exceptional cases are identified and reviewed, and it describes 

the role of evidence in deciding whether theoretical exceptions should be considered. As a counter-

example, Section 4 briefly demonstrates the 'unsafeness' of magnitude tables. Section 5 discusses 

what 'safe' means in the wider context of data access, and the implications for the risk management 

strategies of facility owners. Section 6 concludes. 

2. Safe/unsafe statistics 

The concept of ‘safe statistics’ was formally defined in Ritchie (2008)1; see Brandt et al (2010) for the 

formal Eurostat definition and SDS (2011) for a practical definition. The concept is straightforward: 

researchers produce an infinite range of outputs, but these fall within a much more limited set of 

‘types’ of output: frequency or magnitude tables;  actual and estimated probability; linear regression 

model; residuals; simple and weighted indexes; correlation matrices, and so on. More complex 

outputs can be built from these: simultaneous equation systems, odds ratios, etcetera. 

The key to the classification system is the focus on the functional form of the statistic. This is what 

enables it to break away from questions about whether this or that data provides a disclosure risk. If 

the mathematical characteristics of the statistic mean that identification of separate data points is 

not feasible, then it is ‘safe’. ‘Safety’ is defined irrespective of the data used. 

 If the type of output can be shown to be ‘safe’ then no further analysis of specific outputs is 

required. For example, if an odds ratio is declared ‘safe’, then researchers can be confident that all 

the odds ratios produced in their research will be acceptable for general release. At the same time, 

the owner of the controlled environment need expend no resources checking these outputs, as they 

have been pre-determined as acceptable for release. In contrast, an output defined as an ‘unsafe’ 

statistic cannot be released unless it can be shown, in the specific context, that the output presents 

no disclosure risk. This involves resource expenditure by both researchers and facility owners. 

This classification has two positive outcomes: 

 Researchers are encouraged to produce outputs with no disclosure risk, as the certainty and 

speed of approval is better for ‘safe statistics’ 

 Owners of controlled facilities expend resources checking only those outputs which present 

a notable disclosure risk; this makes both manual and automatic checking simpler 

As a result, both facility owners and researchers spend the most resources on the most risky 

outputs. 

Note that the classification can be challenged: for example, an instance of an ‘unsafe’ frequency 

table can be shown to be safe, perhaps by having many observations. However, while it is common 

for notionally ‘unsafe’ statistics to be declared safe in particular circumstances, it is extremely 

                                                           
1
 The concept was developed at the UK Office for National Statistics (ONS) from 2003, but initially only used in internal 

training documents. Ritchie (2008) refers to ‘safe outputs’; the term was changed later to avoid confusion with use of the former phrase in 
the ‘five safes’ data access model. 



unlikely that a ‘safe’ statistic need be assessed for context-sensitive disclosiveness; otherwise, the 

statistics should not have been declared ‘safe’ (see Section 5 below). 

3. Classification of linear regression coefficients 

There are four stages to classification: 

1. Define the functional form 

2. Identify the disclosure potential in the functional form by considering 

a. Can an element of the statistic relate to a single data point? 

b. Can the statistic be differenced to reveal values? 

c. Anything else, specific to the statistic 

3. If the provisional definition is ‘safe’, identify and evaluate ‘special cases’ 

4. Draft guidelines 

In this section we use the example of simple linear regression coefficients. Ritchie (2012) provides a 

more detailed discussion of the issues and derivation of results. 

3.1 Defining the functional form 

 

Consider a linear least-squares regression on N observations and K variables 

       

where y, X,  and u are, respectively, Nx1, NxK, Kx1 and Nx1 matrices with N>(K+1) and K>1. The 

estimated coefficient vector 

 ̂  (   )      

 is the functional form to be analysed. 

3.2 Identifying the disclosure potential in the functional form 

In general, a coefficient cannot be related to a single data point. Even in the case of a single 

explanatory variable (X= x and a constant), 

 ̂  
∑    

∑  
  

From the single estimated coefficient, it is not possible to identify any values. It is also not possible 

to difference estimated coefficients. Consider adding an additional set of observations so that the 

variable matrices ya and Xa are now (N+1) x 1 and (N+1) x K, respectively. Then 

  ̂  (     )        

But this does not help to identify additional observations: 

 ̂    ̂  (   )      (     )        



The ‘anything else’ test allows transformations to be applied to the statistics where it is thought that 

these might enable identification. For example, in the case of regression coefficients, the inverse 

matrix prevents differencing. However, if the variance-covariance matrix  ̂  (   )    ̂  was 

available, then 

  ̂       ̂                          ̂      ̂       ̂         
 ̂ 

seems to linearise the difference. However, the estimated standard deviations depend on the 

interaction between variables, so the linearised difference is still the result of a weighted sum. 

Hence this transformation has no meaningful impact, and the preliminary classification of regression 

coefficients is ‘safe’. 

3.3 Identifying and evaluating special cases 

Ritchie (2012) identifies a number of potential special cases, set as sets of orthogonal variables, 

single observations on a category, and regression on dummy variables. Ritchie (2012) demonstrates 

that although these are all theoretically feasible, the information set required by an intruder trying 

to extract information from regression coefficients is infeasibly high. 

Take an example: one observation xb, is the only positive observation for a particular category in a 

set of dummy variables. The error term in this case is identically zero:       ̂. If an intruder knew 

that there was only one observation in a category, and the value of all the other regressors for that 

observation, then the exact value of the dependent variable is revealed. Is this a likely occurrence for 

someone reading statistical output? It is difficult to conceive; there is no indication in the t-statistic 

that this is a unique value. A possibility is that all the regressors are public variables, and it known 

with certainty that only one observation, included in the data has one value. This seems an unlikely 

scenario, particularly as it implies that this observation has no explanatory value and should be 

omitted. 

Ritchie (2012) also examines the possibility of approximate (rather than exact) identification, where 

R2 can provide an upper bound for the accuracy of estimates. This is harder to evaluate as a very 

wide range of possible outcomes could be considered (for example, one exceptional value amongst 

many small values). A difficulty with specifying these alternatives is that they make little statistical 

sense. For example, for an outlier to be identifiable with some certainty it needs to be orders of 

magnitude larger than all other records on all variables. Ritchie (2012) cites studies by Statistics New 

Zealand which concludes that R2s of 0.99 are needed before approximate identification becomes a 

realistic probability. 

In summary, while there are theoretical cases where regression coefficients could be disclosive 

(note, even then disclosiveness has to be assessed in context), these cases are not meaningful in a 

practical research environment. 

3.4 Draft guidelines 

Given this analysis, Ritchie (2012) concludes that linear regression coefficients should be identified 

as ‘safe’; exceptions are not deemed sufficiently relevant in practice. 



Ritchie (2012) highlights that even the exceptions disappear if some of the coefficients are not 

released. This has important implications for models which estimate ‘incidental’ parameters; for 

example, fixed-effect panel data models are non-disclosive per se, as the fixed effects are never 

published. Brandt et al (2010) and SDS (2011) use this to argue that an extra-safe regression rule 

should be used, whereby researchers are required to hide at least one published coefficient (for 

example, the constant or time dummies). 

Note that there were qualifications: that (N+1)>K and K>1; that is, this is a feasible regression and 

not an equation set. Brandt et al (2012)suggest that a more sensible (if entirely arbitrary) rule is ‘at 

least ten degrees of freedom’. While this has no strict statistical basis (and should have no impact on 

research), it serves to highlight the assumption that these are ‘genuine’ regressions being estimated. 

Having disposed of the simplest linear regression, it is then straightforward to show that more 

complex regressions (for example, weighted, multi-stage, robust or simultaneous models) have even 

less scope for disclosure risk. All add additional non-linearity to the simpler result and increase the 

convolution of variables. From this Ritchie (2012) generalises that linear regression coefficients are 

‘safe’ irrespective of the estimation method, even though not all methods have been assessed. 

Hence a relatively specific question (is the simplest linear model disclosive?) has been used to 

generate a general which covers a vast amount of research outputs. 

4. Classification of magnitude tables 

As a counter-point to the case of linear regression, consider a simple magnitude table of sums of 

observations.   

4.1 Define the functional form 

For any one table cell, the value is  

   ∑   
 

 

4.2 Identify the disclosure potential 

This is potentially disclosive if the cell size is less than three, but not necessarily; it depends upon the 

data. Hence a rule that N>2 might guard against direct disclosure but prevents legitimate totals 

being published. Moreover, even in tables with N>2 it is quite likely that one observation dominates 

the total, and so that observation can be approximately disclosed; this is a particular problem with 

business data. The total therefore fails the first test, preventing primary disclosure. 

Applying the second test, add an extra observation to the cell: 

     ∑   
   

 

Therefore differencing allows exact disclosure:             , and the totals in the table fail the 

second test too. Thus each table cell presents a significant risk of disclosure; one must evaluate 



disclosure risk by examining the data and the context of disclosure; this is therefore an ‘unsafe’ 

statistic.  

It could be argued that the summation is too simple: it is too sweeping to damn magnitude tables 

because of the unsafeness of the worst-case scenario. Consider instead a mean, which is just as 

likely to be published as a sum: 

   
 

 
∑   

 
 

Then differencing, for example leads to: 

        
 

   
∑   

   
 

 

 
∑   

 
 

 

(   )
     

 

(   )
   

And so 

     (   )                 

Thus publication of means is a special case of totals; it is non-disclosive only if frequencies are not 

published, which in general seems a heroic assumption on which to base confidentiality. A weighted 

average is less likely to be disclosive, as it requires knowledge of the data; but if weights are known 

and not unique to each observation (as in, for example, the stratified sampling of business surveys), 

the potential arises again. Thus, for magnitude tables, it is important to demonstrate that a 

particular output cannot be reduced to a simple summation; again, knowledge of the specific data is 

required to determine whether the output is safe or not. 

4.3 Identify special cases 

There is no need for this as the provisional classification of the base case is ‘unsafe’. 

4.4 Draft guidelines 

As this is an ‘unsafe’ output, guidelines should be drawn up to help output checkers make decide, in 

specific contexts, what makes a table releasable. 

Seen in this context, it is clear why the bulk of SDC research focuses on frequency and magnitude 

tables.  These outputs, the primary product of NSIs, are inherently ‘unsafe’ and need context-

sensitive checking.  Note that the methods used to ensure tables are safe (minimum numbers of 

observations, recoding, perturbative procedures etc) do not change the fundamental ‘unsafeness’ of 

the statistics; they are solutions which reduce disclosure risk but that risk still needs to be evaluated 

once the method has been applied. Thus controlled rounding is not enough to guarantee non-

disclosure; the effectiveness of the rounding still needs to be assessed. 

5. What does ‘safe’ mean? 

This paper has used ‘safe’ and ‘unsafe’ to describe types of statistics. It should be clear that ‘safe’ in 

this context is a relative and subjective term.  



The relativity arises because the process acknowledges that there are cases where the ‘safety’ of the 

output does not hold. A statistic is ‘safe’ because these cases are exceptional and unlikely, not 

because they are theoretically impossible. This is an explicit acknowledgement that one cannot 

prove a statistic has no theoretical disclosure risk, as conceptually a disclosive transformation of the 

data could always be devised. The more useful point is that such a transformation, or the 

exceptional cases identified, imply that the intruder already has more information than would be 

gained. In contrast, the circumstances under which ‘unsafe’ statistics could be disclosive are not so 

unusual and the information requirement relatively low. 

Subjectivity arises from the importance of judgment calls on whether a particular circumstance is 

‘unlikely’.  These are grounded in practical experience of research activity rather than the conceptual 

concerns.  In contrast, more traditional approaches to SDC tend to focus on ‘worst-case’ scenarios, 

claiming these provide a degree of objectivity. However, as Skinner (2012) notes, these perceptions 

of objectivity are misplaced: the parameters of even the most ‘objective’ risk measure are based on 

the subjective risk preferences of the facility owner. 

What does this mean for the facility owner? Put simply, the ‘safe/unsafe statistic’ model requires the 

facility owner to explicitly acknowledge that risk management depends upon effective resource 

management: a ‘safe’ statistic does not mean no possible risk, rather that the risk is so small that 

limited resources are better concentrated on the more pertinent statistics. A positive side-effect is 

that the safe/unsafe statistic model makes much more sense to researchers; and as Desai and 

Ritchie (2010) point out, a contented researcher presents a much lower disclosure risk than an 

irritated one. 

It should be noted that the safe/unsafe classification makes one essential assumption: that 

researchers are genuinely producing research outputs. As a number of authors (Reznek and Riggs, 

2005; Gomatam et al, 2005; Belninger et al, 2011, for example) have pointed out, it is possible to 

manipulate regression models such that a specific value is disclosed in the coefficients. This is a 

potential concern for remote job systems set to automatically release regressions. 

On the face of it, this is a serious issue. The counter-response is that there is no evidence from any 

country of a researcher carrying out such activity; and in the circumstances which would enable a 

researcher to carry out such an attack, more plausible attack mechanisms (leaving a less obvious 

audit trail) present themselves. 

Moreover, while it is clear that no SDC checking mechanism can prevent deliberate falsification of 

results, it is equally clear that this is not the domain of SDC. Deliberate misuse is a failure of the 

accreditation process and is more appropriately addressed there. 

In summary, whilst there are theoretical circumstances under which the ‘safe statistics’ classification 

could be subverted, experience and the analysis of incentives suggests that this is not a practical 

problem. Again, judgment is necessary. 

6. Conclusion 

In a world where potentially all output poses a disclosure risk, effort is best concentrated on the 

outputs most likely to provide a risk. The ‘safe/unsafe statistic’ model has proved increasingly 



popular for OSDC as it provides clear and useful guidelines on how that effort could be expended 

most effectively. 

The conceptual world embodied in this approach presents a different perspective to more 

traditional analyses of disclosure risk. In this view, all risks are possible but empirical evidence is 

used to identify which are the ones of most concern; there is no ‘worst-case’ planning. This explicitly 

creates a hierarchy of risks, places judgment at the forefront of decision-making, and openly 

acknowledges the potential residual risk in unchecked outputs. 

This subjectivity and emphasis on empirical evidence causes concerns for facility owners unused to 

this perspective; but the ‘safe/unsafe’ approach has not created that subjectivity, it has only 

revealed it. Some facility owners also feel uncomfortable about the focus on resources, taking the 

view that as many resources as necessary should be thrown at a significant risk. However, the 

message of this paper is that that is counter-productive: it is the recognition that some risks can be 

effectively ignored that allows more time to be spend on genuinely risky output. Hence a risk 

management strategy which does not reflect the ideas in this paper is likely to be inefficient and less 

safe. 
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