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MEASURING SHIPPING TANKER FREIGHT RISK

Abstract

This is an attempt to measure level of risk exposure in tanker shipping freight markets by adapting a Value at 

Risk approach. These markets operate under conditions of perfect competition, and are extremely volatile, 

with clear presence of high volatility, seasonality and clusters in returns. They also exhibit leverage effects, 

and feature non-zero and high levels of skewness and kurtosis respectively. This study attempts to measure 

extreme conditional volatility through implementing different models that accommodate autoregression in 

conditional volatility of returns, leverage effects and fat-tails via parametric and semi-parametric

specifications. In addition, Extreme Value Theory (EVT) is adopted to explicitly capture huge losses 

exhibited in the left-hand side of the distribution of returns, in comparison to numerous non-parametric 

approaches, Nonlinear-GARCH-t(d) and EVT-based models perform well in forecasting out-of-sample VaR. 

In addition, statistical tests show that the proposed models provide appropriate interval coverage in both 

unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting 

that semi-parametric and EVT-based on a GARCH-t(d)-with leverage effect models are useful techniques for

forecasting VaR in shipping freight rates markets.

Keywords: Value at Risk; Shipping Freight; Tanker Freight; Extreme Value Theory; GARCH and semi-
parametric.
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1 Introduction

The main focus of this paper is to establish a framework in which to measure the level of 

risk exposure for participants in tanker spot freight markets; this is an important block of 

risk management, which is executed through investigating tanker freight volatility. The 

price movement for this market is represented through the Baltic Dirty Tanker Index 

(BDTI), which is published daily by the Baltic Exchange. This index represents 

movements of freight prices for transporting mainly crude oil on different voyage routes, 

and these prices are quoted in a point of scale method known as Worldscale2. For more 

details see Amir Alizadeh and Nikos Nomikos (2008), and also, Manolis Kavussanos and 

Ilias Visvikis (2006). 

It is well documented in the shipping economics literature that shipping spot freight 

prices are determined through interaction of demand and supply of freight services, in 

other words, conditions of perfect competition prevail in shipping freight market, and 

demand for shipping services (freight) is an inelastic derived demand, due to the fact that 

freight costs represents a small fraction of the final price of transported goods. This

demand is influenced by numerous factors, such as world economic conditions, 

international seaborne trade, seasonality, distance to transport goods and the parcel size. 

On the other hand, supply of shipping services measured in tonne-miles is highly elastic 

at low freight rate levels and inelastic at high freight rate levels. Supply also depends on

factors such as; stock of fleet ready to be employed, productivity of the shipping building 

market, level of activity in the scrapping market and current prevailing freight rate prices.

For a more detailed documentation see Stopford (2008).

Shipping freight price movements are considered to be mean-reverting in the long run,

and subject to spikes caused by shocks in supply and demand balance.  With a 

nonstorable feature, huge capital requirements, challenging volatility levels, seasonality 
                                                
2 Worldwide Tanker Nominal Freight Scale: the worldscale association in London calculates the cost 
(break-even) of performing a round trip voyage between any two ports. Based on a standard vessel 
specification, calculations for transportation costs include assumption for bunker prices, port 
disbursements, canal dues and other fixed costs. Freight prices are measured in US$ per metric ton, for each 
route, which is referred to as the flat rate.
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and sensitivity to energy prices and market sentiment, shipping freight markets provide 

huge challenges for all participants. Therefore, exploring and developing a risk 

management framework that fits such extreme market conditions is of paramount 

importance. Such attempts are scarce in shipping literature.

This paper is concerned with investigating one block of risk management, which is, 

measuring tanker freight volatility, with the aim of establishing a framework for 

measuring freight risk exposure for participants in tanker spot freight markets. One 

controversial tool used widely in the banking sector as a threshold for risk measurement 

is Value-at-Risk (VaR), which, undoubtedly is the industry benchmark for risk 

measurement. This is because it captures an important aspects of risk, namely how bad 

things can get with certain probability p? In other words, with a certain level of 

confidence p losses according in a known horizon will not exceed the VaR threshold. 

Furthermore, it is easily communicated and easily understood. In other words, VaR is a 

technique which uses statistical analysis of historical market trends and volatilities to 

estimate the likelihood that a given portfolio losses will exceed a certain amount. VaR 

methods for traditional financial markets are well documented in Dowd (1998), Duffie 

and Pan (1997), Jorion (2000), Holton (2003) and Manganelli and Engle (2004), whilst 

energy VaR is detailed in Clewlow and Strickland (2000) and Eydeland in Wolyniec 

(2003), for electricity markets Kam Fong Chan and Philip Gray undertakes a VaR 

approach, using a number of parametric and non-parametric models were they conclude 

that EVT-based model is a useful technique for forecasting VaR. A general introduction 

of VaR for shipping markets can be found in Amir Alizadeh and Nikos Nomikos (2008). 

A recent attempt found in shipping freight literature, which investigates shipping freight 

risk using a VaR approach was conducted by Angelidis and Skiadopolous (2008), where 

they conclude that the simplest non-parametric models should be used to measure market 

risk for shipping freight rates.

To the author’s knowledge there has been one attempt to measure value at risk for the 

shipping freight market carried out by Angelidis and Skiadopolous (2008), where they 

attempt to measure market risk for freight rates through a number of parametric and non-
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parametric approaches, as well as adopting an Extreme Value Theory method, for four 

Baltic exchange indices; the Baltic dry index (BDI), the 4 time charter average Baltic 

Panamax index (4 TC Avg BPI), the 4 time charter average Baltic Capesize index (4 TC 

Avg BCI) and the dirty tanker index (TD3). They recognize that freight rate risk is higher 

in the tanker freight markets than in the dry freight sector, and conclude that the simplest 

non-parametric models are superior methods for calculating freight risk. The only 

exception occurs in the case of tanker freight rates, which is aligned with this paper 

finding.

VaR measurement is based on the volatility of the portfolio in question. The volatility of 

the shipping freight rates has always been an issue of great importance for shipping 

market participants. Therefore, this paper adopts models that are capable of dealing with 

volatility (standard deviation) of the time series, such models are the GARCH-family, 

which are presented and analysed in a later section. The conventional approaches to 

estimating VaR in practice can be broadly classified as parametric and non-parametric. 

Under the parametric approach, a specific distribution for returns must be presumed, with 

a Normal distribution being a common choice. In contrast, non-parametric approaches 

make no assumptions regarding the return distribution. In addition, an important method 

for improving VaR estimates in shipping freight market lies in extreme value theory 

(EVT) measurement, which specifically targets extreme returns. Focusing on the left side 

of the return distribution rather than the entire distribution, by definition, VaR-EVT

measures the economic impact of rare events. Numerous applications of VaR-EVT have

been implemented in financial literature. Embechts, Klüppelberg, and Mikosh (1997) and 

Reiss and Thomas (2001) provide a comprehensive overview of EVT as a risk 

management tool. Longin (1996) examines extreme movements in U.S. stock prices and 

shows that the extreme returns obey a Fréchet fat-tailed distribution. Ho, Burridge, Cadle, 

and Theobald (2000) and Gençay and Selçuk (2004) apply EVT to emerging stock 

markets which have been affected by a recent financial crisis. They report that EVT 

dominates other parametric models in forecasting VaR, especially for more extreme 

returns tail quantiles. Gençay, Selçuk, and Ulugülyaĝci (2003) reach similar conclusions 

for the Istanbul Stock Exchange Index (ISE-100). Müller, Dacorogna, and Pictet (1998) 
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compare the EVT method with a time-varying GARCH model for foreign exchange rates. 

Bali (2003) adopted the EVT approach to derive VaR for U.S Treasury yield changes.

Andrews and Thomas (2002) combine historical simulation with thresh-old- based EVT 

model to fit the tails of the empirical profit and loss distribution of electricity. They report 

that the model fits the empirical tails better than the Normal distribution. Rozario (2002) 

derives VaR for half-hourly electricity returns Victorian, Australia using a thresh-old-

based EVT model. While the model performs well for moderate tails covering to 1%, it 

struggles when α 3is below 1%, a fact Rozario attributes to the model’s failure to account 

for clustering in the data. It is important to note that EVT relies on an assumption of i.i.d.4

clearly; this is not the case for shipping freight return series, and arguably financial 

returns in general. One approach to this problem is the GARCH-EVT model provided by 

McNeil and Frey (2000). The advantage of this combination lies in its ability to capture 

conditional heteroskedasticity in the data through a GARCH framework, while at the 

same time modelling the extreme tail behaviour through an EVT method. As such, the 

GARCH-EVT approach might be regarded as semi-parametric (Manganelli & Engle, 

2004). Bali and Neftci (2003) apply the GARCH-EVT approach to U.S. short-term 

interest rates and show that the model yields more accurate estimates of VaR than the 

obtained from a Student t-distribution GARCH model. Fernandez (2005) and Bystrőm 

(2004) also find that GARCH-EVT model performs better than the parametric models in 

forecasting VaR for various international stock markets. In as energy application, 

Bystrőm (2005) employs a GARCH-EVT framework to NordPool hourly electricity 

returns. He finds that extreme GARCH-filtered residuals obey a Fréchet distribution. 

Furthermore, the GARCH-EVT model produces more accurate estimates of extreme tails 

than a pure GARCH model. At present, applications of EVT to estimate VaR in shipping 

market are sparse.

The objective of this paper is to establish a framework in which to measure the level of 

risk exposure for participants in tanker spot freight markets, through implementing the 

use of models that combine the ability to capture conditional heteroscedasticity in the 

                                                
3 α  = 1-p, where p is level of confidence.
4 i.i.d. stands for independently and identically normally distributed with mean equal to zero and variance   
  equal to 1.
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data through a GARCH framework, while at the same time modelling the extreme tail 

behaviour through standardized returns and an EVT-based method. There are several 

contributions. Firstly, proposing a parametric approach through adopting a simple 

GARCH model, a GARCH model with leverage effect and a Student t GARCH to 

accommodate autoregression in conditional volatility. Secondly, examining the 

performance of different GARCH models in computing VaR. Third, introducing an EVT-

based on the GARCH-t(d)-with leverage effect model and it’s effectiveness in forecasting 

VaR. Fourthly, evaluating all models performances through back testing, which compares 

the closeness of measures produced by different models and corresponding actual returns.

Finally, we examine the strength of a semi-parametric method in modelling freight 

volatility in comparison to non-parametric and parametric methods. A further 

contribution is the method we use in estimating coefficients parameters, this study,

compares two different estimating methods, one using an Excel application and the other 

using an Eviews application. On one hand, taking an advantage of the former possibility 

of imposing persistence restriction and variance targeting, and on the other hand, 

benefiting from the powerful MLE application of the latter, another important advantage 

of using free modelling in Eviews without imposing restrictions, is the ability to evaluate 

suitability of models for the sample data, as it is argued that the necessity of imposing 

constrains on an optimization problem is an indication that the model is inappropriate for 

forecasting.

The remainder of the paper is structured as follows. Section 2 documents the 

methodology used in this study, which include, value at risk methodology, non-

parametric approach, parametric approach, semi-parametric approach, Maximum 

Likelihood Estimation, variance targeting, VaR benchmarks, Extreme Value Theory 

concept and Back Testing approach. Section 3 is concerned with data and empirical 

analysis. Section 4 concludes the paper with conclusion analysis, references and 

appendixes.
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2 Methodology Section

2.1 Value at Risk Methodology

Value at risk refers to maximum amount in money terms, which an investor is likely to 

lose over some period of time, with a specific confidence level. In practice, value-at-risk

estimates are calculated from the 90th to 99.9th percentiles; in this study we calculate 

value at risk with a 95th and 99th percentile range. Value at risk is always reported in

positive values, although it’s a loss, for the purposes of this study we follow this concept. 

VaR is calculated in the form; 

       (2.1)

Where SD is standard deviation and Zα is standardized returns, which are assumed to be

)1,0(... Ndii . Even though, this study measures the level of risk exposure in tanker freight 

markets, through computing one day value at risk, the main contribution of this paper is 

modelling tanker freight volatility. Therefore, once we establish an appropriate forecast 

for standard deviation, we substitute in the above formula to obtain one step ahead value 

at risk for tanker freight returns. In other words, VaR is computed in two steps. Firstly, 

we establish a volatility approach to obtain daily standard deviations values. Secondly, 

we establish a method of distribution for returns, normally this is set to follow a normal 

distribution, however, it is well documented in the literature that financial returns are not 

normally distributed, thus, the implementation of free method of distribution of returns.

In this paper, therefore, volatility models are combined with historical past standardized 

returns to compute one day 1% and 5% VaRs measures.   

2.2 Historical Simulation Method

The simple non-parametric HS technique assumes that distribution of tomorrow’s returns,

1tR , is well explained by the empirical distribution of the past m observed returns, that 

is,  m
tR 11   . Therefore, the value at risk with coverage rate, α, is simply calculated as 

α × 100% percentile of sequence of past portfolio returns in the form;

                ,111
m

tt RpercentileVaR                                            (2.2)

ZSDVaR 
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Typically m is chosen in practice to be between 250 and 1000 days corresponding to 

approximately 1 to 4 years. For the purposes of this study we use 250 days period.

2.3 Volatility Modelling

One important objective of this paper is to establish a framework to model non-normal 

conditional distribution of shipping freight returns for spot freight markets. To this end, 

we are particularly interested in different approaches to variance modelling.

2.3.1 Simple Variance Forecast method (RiskMetrics Model)

It is well documented in the financial literature that zero mean returns for daily time 

series cannot be rejected. Thus, for the purpose of this study, conditional mean freight 

returns tR is assumed to be zero, and also, innovations or news affecting returns are 

normally distributed; this assumption is relaxed later on. Together these assumption 

imply that once we have established a model for time varying variance, 2
1t , we can 

easily calculate any desired risk measure. JP Morgan’s proposed the RiskMetrics 

variance, in the form;

σt+12 = σt2+(1- )Rt2                                              (2.3)

With 0<  <1,  =0.94. Thus, based on RiskMetrics methodology, forecasts of 

tomorrow’s volatility are simply a weighted average of today’s volatility and today’s 

squared return.

2.3.2 The GARCH Variance Model

Bollerslev (1986) and Taylor (1986) proposed the simplest generalized autoregressive 

conditional heteroskedasticity (GARCH) model of dynamic variance, which is well 

documented in the literature, thus, one day plus time at t variance is expressed as;

222
1 ttt R                                                  (2.4)           
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Where ,1  α is the weight assigned to squared return at time t 2
tR and β is the 

weight assigned to variance at time t σt2. The GARCH model implicitly relies on the long-

run average variance σ2, so that .)1(2  

2.3.3 The GARCH (1, 1) - with leverage effect

Simple GARCH models by definition do not capture conditional non-normality in

returns. This study follows the assumption that returns are conditionally normal if 

standardized returns5 are normally distributed. It has been argued in the literature that bad 

news represented by negative returns increases variance by more than good news 

represented by positive returns, of the same magnitude, this is referred to as leverage 

effect. The simple GARCH model is modified so that the weight given to the return 

depends on whether the return is positive or negative, expressed in the following format; 

                            
222

1 )( tttt R                                              (2.5)

This is a Nonlinear GARCH model. Another way of capturing the leverage effect is to 

define an indicator variable, tI , to take on the value of one if return is negative and zero 

otherwise. The variance model can be written as:

                       
2222

1 ttttt RIR                                               (2.6)

Thus,  larger than zero will again capture the leverage effect, this is referred to as the 

GJR-GARCH model. This paper makes use of both formats. The latter format is 

estimated in an Excel spread sheets application and the formal format is estimated using 

Eviews computing programme. 

                                                
5 Standardized Returns are returns divided by their time-varying standard deviation.
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2.3.4 Filtered Historical Simulation (FHS)

The filtered historical simulation combines the best of the model-based methods of 

variance with model-free methods of distribution. Once the 1-day volatility is calculated

the 1-day value at risk is simply computed using the percentile of the database of 

standardized returns in the form of; 

                 
   )7.2(,1111  

m
ttt zpercentileVaR   

Where  zොt+1-τ represents standardized returns drown form past observed returns and 

calculated as zොt+1-τ= Rt+1-τ σt+1-τ⁄ , for τ=1,2,…,m.   

                         

2.4 Standard Maximum Likelihood Estimation

The assumption of ... dii normality implies that the probability or the likelihood, 1tl , of 

1tR is )
2

exp(
2

1
2

1

2
1

2
1

1






 
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Rearranging (2.8) we arrive to (2.9), by maximizing the joint likelihood function of the

observed sample we arrive at the parameters estimations.

)9.2(
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1
)(

2

1
)2(

2

1
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1 1
2

1

2
12

11 
  
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







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

The MLE will yield estimates of the mean and variance parameters, which converge to 

the true parameters as the sample gets infinitely large as long as the mean and the 

variance functions are properly specified.
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2.5 Maximum Likelihood Estimation for GARCH(1,1)-t(d) model with leverage 

effect

Assuming returns are modelled as 111   ttt zR  with )(~1 dtzt . The standardized 

returns are calculated as 111   ttt Rz  . The d parameter is estimated through

maximizing the following likelihood function;

 


 
T

t
t dInIndIndInTdzfInInL

1
11 2/)2(2/)())2/(())2/)1((());(( 

                                                      

)10.2()
2

)(
1()1(

2

1

1

2
11








T

t

tt

d

R
Ind



By adjusting equation (2.10) to estimate the variance and the d parameters 

simultaneously, we arrive to equation (2.11)

                               

)11.2(
2

)(
));((

1 1

2
1

112  
 


 

T

t

T

t

t
t

In
InLdRfInInL


                  

Estimated parameters are found after maximizing (2.11) over all parameters 

simultaneously.

2.6 Variance Targeting

Variance targeting is a useful technique that was introduced by Engle and Mezrich 

(1996), this is useful when estimating models in Excel. The simple GARCH model can 

be written as: 

                    
222222

1 )1( ttttt RR                   (2.12)

Thus, instead of estimating  by MLE, it is simply substituted by the long-run variance

formula. 2 is set to equal the sample variance, which is easily calculated as 





T

t
tRT

1

2
1

2 1 . Variance targeting has the benefit of imposing the long-run variance 

constrains on the GARCH model directly. More important, it reduces the number of 

parameters to be estimated in the model by one.
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2.7 The t-Student Approximation to VaR

The t-student value at risk for spot freight return: 111   ttt zR  with )('~1 dtzt , can be 

calculated as 

)13.2()(
2 1

11 dt
d

d
VaR tt





 

2.8 The Cornish-Fisher Approximation to VaR

The Cornish-Fisher VaR with coverage rate can be calculated as:

                                              )14.2(1
11


  CFVaR tt 

      )15.2(5)(2
36

1
3)(

24

2
1)(

6

1 131
2

1312111  


CF

Whereas, 1 is the skewness and 2 is the excess kurtosis of the standardized returns tz .

2.9 Extreme Value Theory (EVT)

A shortcoming of the VaR measure is that it ignores the magnitude of extreme negative 

returns, which is important for financial risk managers. Thus, Extreme Value Theory fills

this gap. Thus, modelling conditional normality is performed by combining a variance 

model with an EVT application based on standardized returns )1,0(~111 DiddRz ttt    .

Consider the probability of standardized returns z less a threshold u being below a value x

given that the standardized return itself is beyond the threshold, u. We can write

 uzxuzxFu  Pr)( , where x>u. In terms of conditional probability, we can write

 
  )16.2(

)(1

)()(

Pr

Pr
)(

uF

uFuxF

uz

uxzu
xFu 








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Let T denote the total sample size and Tu denote the number of observations beyond the 

threshold u. Using the loss quantile 1
1

pF defined by 

  )]//([1
1 TTpuF up . We can 

calculate The VaR as: 

              
)17.2()]//([1

1
111

 



  TTpuFVaR utptt        

The Extreme Value Theory is built on the concept that as the threshold, u, gets larger, it 

converts to the generalized Pareto (GP) distribution. (For a more detailed discussion of 

EVT see Christoffersen (2003)). EVT’s main focus is on extreme negative returns. 

Therefore, our EVT analysis is centred on negative returns instead of returns themselves.

2.10 Back Testing VaRs

For purposes of examining the accuracy of arrived forecasts, we split the total examined 

sample in two periods. The first period is for model estimation; this is used for 

calculating VaRs for the second period, which is then back tested against actual returns 

for the same period. The 
1tVaR measure promises that only α ×100% of the time the 

actual return will be worse than the forecast 
1tVaR measure. We define the hit sequence

of VaR violations as 

)18.2(
,0

,1

11

11
1 


















 



tt

tt
t VaRRif

VaRRif
I

Thus, a sequence  T

ttI 11  is constructed across T days indicating when the past violations 

occurred. For the purposes of evaluating the accuracy of forecasts the following three 

tests are carried out.

2.10.1 The Unconditional Coverage Test

The unconditional coverage hypothesis tests the fraction of violations obtained for a 

particular risk model, denoted as  , to see if it is, significantly different from the 
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promised fraction, α. (for details see Christofferson, 1998; McNeil & Frey, 2000). The 

unconditional coverage hypothesis is computed using the following likelihood ratio test.

   )19.2(~)()1()1(2 2
111

1010  TTTT
uc TTTTInLR 

Where 0T and 1T are the number of 0s and 1s in the sample. As the number of 

observation, T, goes to infinity, the test will be distributed as a 2 with one degree of 

freedom.

2.10.2 The Independence Test

The unconditional coverage test investigates if violations occurrence exceeds the α value, 

but it dose not provide information regarding the spread of these events. The 

independence hypothesis investigates the cluster of violations represented by the one’s hit 

sequence, in equation (2.18). Therefore, this test rejects VaR models, which imply 

violations that are clustered in time. To this end, assume the hit sequence is dependent 

over time and that it can be described as a so-called first-order Markov sequence. For a 

sample of T observations, the likelihood function of the first-order Markov process is 

expressed as

)20.2()1()1()( 11100100
111101011
TTTTL  

Using a likelihood ratios test to test the independence hypothesis that 1101   .

  )21.2(~)(/)(2 2
11  


LLInLRind

Where )(L is the likelihood under the alternative hypothesis from the ucLR test. For 

more details see Christofferson, (1998).

2.10.3 Conditional Coverage Testing

Therefore, the importance of both previous tests in evaluating VaR forecast becomes 

paramount. Testing jointly for independence and correct coverage is conducted using the 

conditional coverage test

                                                                 

)22.2(~ 2
2XLRLRLR induccc 
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3 Empirical work 

3.1 Simple Analysis and Testing of the Data Sample

In a quest to establish an appropriate risk measure for shipping tanker freights, a value at 

risk methodology is applied to five major dirty tanker shipping routes, represented in 

table 1. This refers to vessels transporting dirty cargo such as crude oil from one port to 

another. For purposes of this study returns are computed in the following form:

)1.3()()( 11 ttt SInSInR                                       

Where St denotes spot price at time t and St+1 spot prices at time t+1. The Baltic Dirty 

Tanker Indexes are used as an indication of freight movements for crude oil and dirty oil 

products; the index consists of 18 voyage charter routes6 quoted in World scale points. A 

voyage charter provides transport for a specific cargo between two ports for a fixed price 

per ton of cargo.

Freight spot prices are quoted in World Scale points; this is a fraction of the flat rate 

instead of a plus or minus percentage. World scale rates are derived assuming that a 

tanker operates on round voyages between designated ports. This calculated schedule is 

the flat rate expressed in US$/ton, which is published annually by the world scale 

organization. The tanker industry uses this freight rate index as a more convenient way of 

negotiating and comparing freight prices per ton of oil transported on different routes.

For the purposes of this study, we examine daily shipping freight returns for five major 

dirty tanker shipping routes, the full data sample period is from 27-JAN-98 to 24-DEC-07

(12430 return observations). The data period used for estimation is from 27-JAN-98 to 

30-JUN-05, and the data period used for evaluation is from 01-JUL-2005 to 24-DEC-07. 

The data sample was downloaded from Clarkson Intelligence Network website, where all 

spot prices are expressed in World Scale.

                                                
6 Voyage charterer refers to spot prices for hiring a ship, which is a percentage of the flat rate for that route. 
Spot prices are quoted $/per ton
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The primary goal of the study is to assess the capability of a number of alternative

approaches to accurately measure VaR for shipping freight rates. To do this, the full data 

sample is divided into an in-sample period; on which the model estimation section are 

based, and an out-of-sample period over which VaR performance is measured.

Tables 2, 3 and 4 reports descriptive statistics for daily spot and returns respectively, for 

all the five shipping routes. Statistics are shown for full-sample, as well as in-sample 

periods used subsequently in model estimation. Full sample sizes are 2487 days. While 

the positive skewness, high kurtosis and the Jarque-Bera normality test clearly illustrate 

the non-normality of the distribution, the mean daily returns are quite close to zero, which 

clarifies the zero mean assumption. Evidence of volatility clustering is clear in graphs of 

daily returns in Fig 2, which suggests the presence of heteroscedasticity. ARCH statistics 

indicates first order autoregressive conditional heteroscedasticity, as well as the 

possibility of time-varying volatility. These findings led to the adoption of the GARCH 

models discussed in the methodology section.

Fig. 2 represents graphs of spot prices, returns and volatility for each shipping route. 

Together with Tables 2, 3 and 4, they demonstrate the defining characteristics of the dirty 

tanker market; high volatility compared to financial markets, seasonality, volatility 

clustering and fat-tailed distributions. These descriptive statistics and plots further 

motivate the exploration of the alternative approaches to measuring VaR described in an 

earlier section. By constructing and plotting a simple histogram of past returns for 

different freight indexes against a normal distribution curve, we can examine to what 

extant the histogram conforms to the density of the normal distribution; this is illustrated 

in Fig1 and appendix B. In examining Fig. 1 notice how the histogram of each route has 

longer and fatter tails, in particular on the left side and how it is more peaked around zero 

than normal distributions. Fatter tails mean a higher probability of large losses than the 

normal distribution would suggest. Note that positive skewness is a sign that the market 

exhibits large returns but not equally large down moves. However, the down movements 

can be significant.
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[Please insert Tables 1, 2, 3 & 4 about here]

[Please insert Figures 1 & 2 about here]

We consider several ways of diagnostic checking. We first examine the autocorrelation of 

raw returns to see if the assumption of constant mean is valid. As noted earlier, returns 

are almost impossible to predict from their past. In other words daily returns have very 

little autocorrelation, and that is illustrated clearly in Appendix A. Where the first graph 

of each figure represents autocorrelation plots for squared returns against standardized 

squared returns for GARCH(1,1), NGARCH, GJR-GARCH, NGARCH-t(d) and GJR-

GARCH-t(d) models respectively. Where standardized squared returns, are squared 

returns divided by the time varying variance. The goal of such plots is to assess the 

dynamics of the modelled variance. By examining the graphs in Appendix A it’s clear 

that autocorrelations of raw returns and squared raw returns exhibit positive 

autocorrelation for low lags, in most of the proposed models, while, squared standardized 

returns don't show any systematic pattern, which when evident indicates that models 

imbedded with standardized returns explain the dynamics of volatility probably. 

Appendix B, illustrates the QQ plots. The purpose of so-called QQ plots is to see if the 

distribution we assumed for standard returns captures the extreme observations in the 

sample. We study three main plots. First, QQ plots for standardized returns against the 

normal distribution. Second, QQ plots for standardized returns against student t 

distribution. Third, EVT-QQ plots for largest losses. It’s obvious that the EVT QQ plots 

are the closes to capture such extremes. 

The performance of 1-day 1% and 5% VaR measures for all proposed models and for 

each route are will demonstrated in Tables 8,9,10,11 and 12, combined with back testing 

results in Table 13. This clearly indicates the strength of NGARCH-t(d) and EVT- based 

models, on Student-t GARCH with leverage effect, as they captures the volatility in 

returns very well.
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3.2 Model Estimation and Analysis 

The main objective of this study is to compute 1-day Value at risk, based on conditional 

volatility forecast, therefore, we implement the use of three members of the GARCH 

family, a simple GARCH model, GARCH-with leverage effect and Student-t GARCH 

with leverage effect, the in-sample parameters estimations results are represented in 

Tables 5, 6 and 7, respectively. In addition, the volatility performances of these models 

are compared with bench marks, such as, the popular RiskMetrics and Historical 

Simulation models. We also examine the probability of extreme losses using an EVT 

approach. The estimation is performed using Maximum Likelihood Estimation (MLE) 

method, which is executed in two different applications; an Excel spread sheet 

application and an Eview programme application. The objective of such a dual approach,

on one hand, to take an advantages of the former possibility of imposing persistence 

restriction and variance targeting, and on the other hand, benefiting from the powerful 

MLE application of the latter.  

  

The simple GARCH(1,1) model parameters are estimated and represented in three 

different sections in table 5: section one, without variance targeting and with persistence 

restriction of less than one; section two, with variance targeting and with persistence 

restriction of less than one; section three, without any constraints7. In the first two cases, 

where restrictions where required, the calculations were performed in an Excel 

spreadsheet. In the third case they were performed using Eviews, this method benefits

from free method of estimation. In other words, once coefficients are estimated in Eviews 

and found significant and model structure is satisfactory, it is an indication of the model 

suitability for forecasting. The results clearly show superiority of a simple GARCH 

model estimated in Excel over Eviews estimation, where estimated models are unstable, 

with persistence greater than one. Thus, using a simple GARCH model to forecast 

volatility for routs TD3 and TD7 is better preformed if the coefficient parameters were 

estimated with restrictions imposed.

                                                
7 It is not possible to set any constrains to coefficients estimations using Eviews programme.
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Second, adopting models that capture leverage effect, such as GJR-GARCH(1,1) and 

NGARCH(1,1) models, although they are somehow similar, the former is used in an 

Excel application and the latter is used in an Eviews application. This is illustrated in 

Table 6 in two sections. In the first section, the coefficients parameters are estimated in 

Excel using a GJR-GARCH model. In the second section, coefficients parameters are 

estimated in Eviews, using a Nonlinear GARCH model. Again results clearly suggest the 

superiority of GARCH- with leverage effect estimated in Excel over Eviews estimation. 

In two of the total routes the persistence is greater than one, but particularly in the TD7 

case the persistence is quite high, which indicates a very unstable GARCH model. 

Although estimated coefficients for models with leverage effect can have negative values, 

it’s the persistence that should be less than one to have a stable model. 

Third, introducing a GJR-GARCH-t(d) model, where the coefficients parameters are 

estimated using Eviews with a trial and error method to fined the best combination of 

MLE, significance coefficients and persistence less than one. The estimated coefficients 

are represented in Table 7 where they are significant and have positive values expect 

for TD7, which is an indication of a negative effect of bad news on volatility of returns 

for vessels operating in the North Sea area. Empirical results indicates that a Nonlinear-

GARCH-t(d) model estimated in Eviews free method without imposing any constraints,

and still yielding significant parameters and a stable structure, is the best model to fit the 

characteristics of shipping freight rates market, accounting for effect of bad news, large 

losses and conditional volatility. In Appendix B, It’s clear from the QQ plots that the 

former model removes some of the non-normality in returns, but some still remains. The

patterns of deviation from the 45- degree line indicate that large positive returns are 

captured well by the Nonlinear-GARCH-t(d) model, especially for TD3 and TD5 routes, 

which is not a main concern for risk analysis. However, the model does not allow for a 

sufficiently fat tail as compared with the data. This shortcoming can be countered by

adopting an EVT approach.  

[Please insert Tables 5,6 & 7 about here]
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3.3 VaR Empirical Results

In this paper, calculations for VaR measures are performed using GARCH-based, FHS, 

and EVT specifications, which are compared with bench marks such as HS and 

RiskMetrics. The performance of 1-day 1% and 5% VaR forecasts are well explained in 

tables 8,9,10,11 and 12, combined with back testing results in table 13. These clearly 

indicate that GARCH-t(d)-based models with leverage effect are superior in modelling 

daily VaRs for tanker freight returns and better capture volatility of returns compared 

with other models. In addition, estimated coefficients for the superior models are found to 

be positive, significant and with persistence less than one, which is an indication of the 

usefulness of these models as a measure of volatility for shipping freight returns. 

Furthermore, forecasts obtained through the NGARCH-t(d)-EVT model is superior as 

well in forecasting 1-day VaR for tanker freight rates, the reason for this superiority is 

down to the implementation of the Student-t Nonlinear Generalized Autoregression 

Conditional Heteroscedasity concept into EVT approach. Comparing VaR measures with 

VaR benchmarks such t-Student, Cornish Fisher and Normal distributions. Even though, 

in some cases benchmarks back testing results show superiority, it is only because 

thresholds are set so high that returns in most extreme cases could not exceed these 

thresholds, for instant, in Table 8, 1-day 1% VaR measure using a CF approach, yields a 

zero hit sequence, in other words during the estimated period negative shocks have not 

exceeded VaR threshold, where average maximum VaR threshold value is nearly 189% 

higher than any other models thresholds.  

To examine the performance of the calculated VaR measurement, we back test 1day VaR 

forecast against actual returns for out of sample. The following tables illustrate VaR hit 

sequences, which is an indication in percentage terms of the level of violation occurring 

in the VaR measure and is measured as following:   

VaR Hit Sequence= Number of occurring violations
Total number of observations ×100                           (3.2)

Number of occurring violations being number of times that negative actual returns has 

exceeded the forecasted VaR measure. We also report average, minimum and maximum 

1-day 1% and 5% VaR measures in the same table, this is used as a measure of VaR 
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models capability to adjust to extreme movements in freight markets. In other words, the 

larger the spread between the reported average, minimum and maximum VaR values for 

a particular VaR model the higher its adaptability to extreme market movements. In 

addition, Table 13 reports statistics tests for VaR measurements performed by the 

different applied models. These back testing results clearly highlight the superiority of 

semi-parametric models over other industry benchmarks models, where VaR models that 

combine GARCH-based method of volatility with filtered historical simulation model-

free method of distribution, are not-rejected VaR models.

[Please insert Tables 8, 9,10,11,12 & 13 about here]

4 Conclusion 

In this study an attempt is made to measure Value at risk for shipping freight rates by 

computing the following models FHS, GARCH-t(d) and EVT, and also comparing the 

results with bench marks such as the popular Historical Simulation and RiskMatrics 

models. A simple symmetric conditional variance approach, catches the effect of market 

shocks and the length of time for these shocks to phase out, which can be we used to 

explain the magnitude effect of shocks to freight tanker volatility returns. The results 

identify two main shortcomings with a symmetric volatility approach; it does not account 

for leverage effects and extreme non-normality of daily freight returns, it is well 

documented in the literature that negative returns increase volatility of returns compared 

with positive returns and also that returns are far from being normally distributed. 

Therefore, we implement the use of a Non- normal Asymmetric conditional variance 

approach, which captures the leverage effect and also, better capture the effect of market 

shocks and volatility persistence.  

Popular approaches to VaR measurements that are common in financial markets are not 

appropriate for measuring VaR for shipping freight rates. In addition to popular 
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parametric and non-parametric approaches, this study explores an approach to VaR 

forecasting that incorporates extreme value theory. Given daily data series, the model 

accommodates autoregression and leverage effects in conditional volatility equation. 

Modelled residuals are standardized to produce (near) i.i.d observations, and EVT is 

applied to the standardized returns to forecast the tail quantiles required for VaR. The

results support the deployment of the proposed model. The two-step procedure produces 

standardized returns that behave significantly better than raw returns in terms of 

independence, and thus better facilitate the EVT implementation. Of the parametric 

models the proposed NGARCH-t(d)-FHS  method arguably produces the most accurate 

forecasts of VaR.

At the moment there are hardly any studies of VaR applications in the shipping freight 

markets. Furthermore, a thoroughly examining of the different shipping routs under risk 

management concept is required. It will be interesting, for example, to see the 

methodology applied to shipping company’s portfolios, and to study the effectiveness of 

the concept on the overall Risk Management of the portfolios. In addition to the applied 

methodology in this study, further studies should be carried out estimating VaR using the 

powerful concept of Monte Carlo Simulation and Markov switching regime models. In 

carrying such studies the applicant should combine the use of such powerful estimating 

methods with a computer packages such as Rats or C++ for the purpose of estimating 

significant parameters coefficients.  
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Table 1 Dirty Tanker routes and cargo description

       Source: Baltic Exchange. 

Table 1: Represents a description of five Dirty Tanker shipping routes under 
investigation. First, second and third columns, represents shipping voyage route 
number, voyage route description and vessel capacity, respectively. The last 
column is also an indication of vessel type. VLCC, VLCC, Suezmax, Aframax 
and Panamax vessels operate on routes, TD3, TD4, TD5, TD7 and TD9, 
respectively.

Table 2 Spot Freight Rate Statistics

Table 2: Represents a summary of basic statistics for spot freight prices, for five 
tanker routes, it is clear from minimum, maximum and standard deviation of 
freight prices the large spread and high volatility in freight prices, respectively. 
All routes show signs of positive skewness, high kurtosis and departure from 
normality represented by the Jarque-Bera test, values in bracts are p values, which 
is significance for all routes  

Route Route Description Cargo Description
TD3 MEG (Ras Tanura) to Japan (Chiba) 260,000 mt

TD4 West Africa (bonny) to US Gulf (LOOP) 260,000 mt

TD5 West Africa (bonny) to USAC Gulf (Philadelphia) 130,000 mt

TD7 North Sea (Sullom Voe) to continent (Wilhelmshaven) 80,000 mt

TD9 Caribbean (Puerto la Cruz) to US Gulf (Corpus Christi) 70,000 mt

TD3 TD4 TD5 TD7 TD9
No. of Obs 2487 2487 2487 2487 2487

 Mean 88.29168 91.6086 127.0222 143.6173 183.0734
 Median 73.89 81.79 113.64 132.25 163.18

 Maximum 342.97 304.17 399.79 333.18 450.45
 Minimum 28 38.2 54.14 76.72 92.5
 Std. Dev. 48.79301 44.70453 54.85009 51.71011 74.55339
 Skewness 1.883286 1.48943 1.322443 1.137704 1.226752
 Kurtosis 8.081297 6.210291 5.312879 4.065812 4.09866

J-B 4145.69 [0.0000] 1987.48 [0.0000] 1279.23 [0.0000] 654.23 [0.0000] 748.87 [0.0000]
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Table 3 Freight Return Tabulation

Table3: Represents a tabulate compiling data from 1998 to 2007, for tanker 
freight returns, during the sample period negative freight returns have occurred 
on average nearly 50% of the time. It is clear that participations in shipping 
freight markets have on average an equal chance of experiencing extreme drops 
in returns down to 20% as well as positive gains up to 20%. One interesting 
question; what is the probability of these events occurring?

Range Count % Count % Count % Count % Count %
[-0.6, -0.4] 2 0.08 0 0 0 0 1 0.04 1 0.04
[-0.4, -0.2] 5 0.2 1 0.04 1 0.04 2 0.08 9 0.36
[-0.2, 0.0] 1322 53.18 1219 49.03 1293 52.01 1299 52.25 1217 48.95
[0.0, 0.2] 1138 45.78 1264 50.84 1186 47.71 1166 46.9 1235 49.68
[0.2, 0.4] 19 0.76 2 0.08 6 0.24 16 0.64 21 0.84
[0.4, 0.6] 0.0 0.0 0.0 0.0 0.0 0.0 2 0.08 3 0.12

Total 2486 100 2486 100 2486 100 2486 100 2486 100

TD3 TD4 TD5 TD7 TD9



3

Table 4 Daily Returns Statistics

Table 4: Represents a summary of basic statistics for spot freight returns, for five tanker 
routes. The full-sample starts from 27-Jan-98 to 24-Dec-07 and includes the estimation 
and testing periods. In-sample starts from 27-Jan-98 to 30-Jun-05 and is the data period 
used for estimation. It is clear from minimum, maximum and standard deviation values of 
freight returns for both periods, the large spread and high volatility in freight returns, 
respectively. All routes show signs of positive skewness, high kurtosis and departure 
from normality represented by the Jarque-Bera test, which is significance for all routes. J-
B is the Jarque-Bera normality test. The 5% critical value for this statistic is 5.99. ARCH 
is the F test for first order autoregressive conditional heteroskedasticity, which indicates 
the presence of first order autocorrelation. Values in [] are p values.  

TD3 TD4 TD5 TD7 TD9

Full Sample
Start Date 27-Jan-98 27-Jan-98 27-Jan-98 27-Jan-98 27-Jan-98
End Date 24-Dec-07 24-Dec-07 24-Dec-07 24-Dec-07 24-Dec-07

No. of Obs 2486 2486 2486 2486 2486

 Mean 0.000612 0.000439 0.000341 0.000283 0.00052
 Median -0.002171 0.0000 -0.001361 -0.001703 0.0000

 Maximum 0.399607 0.25688 0.260979 0.427001 0.462391
 Minimum -0.501993 -0.28385 -0.208064 -0.499592 -0.419894
 Std. Dev. 0.049742 0.033195 0.039731 0.046311 0.054648
 Skewness 0.314953 0.494274 0.772317 1.350337 0.686768
 Kurtosis 18.55012 14.74331 10.04016 23.90852 17.26577
ARCH(1) 111.956 [0.0000] 43.075 [0.0000] 57.257 [0.0000]  70.995 [0.0000] 203.470 [0.0000]

J-B 25088.20 [0.0000] 14385.92 [0.0000] 5381.13 [0.0000] 46038.64 [0.0000] 21275.88 [0.0000]

In-Sample
Start Date 27-Jan-98 27-Jan-98 27-Jan-98 27-Jan-98 27-Jan-98
End Date 30-Jun-05 30-Jun-05 30-Jun-05 30-Jun-05 30-Jun-05

No. of Obs 1860 1860 1860 1860 1860
 Mean 0.0001 0.0001 0.0000 0.0001 0.0003

 Median -0.0020 0.0000 -0.0011 -0.0018 0.0000
 Maximum 0.3996 0.2156 0.2074 0.4258 0.4624
 Minimum -0.5020 -0.2839 -0.2080 -0.1924 -0.4199
 Std. Dev. 0.0519 0.0309 0.0358 0.0392 0.0509
 Skewness 0.2418 0.1343 0.5344 2.2832 0.7181
 Kurtosis 19.6494 16.8366 10.5960 24.8225 19.3568
ARCH(1) 68.44 [0.0000] 28.44 [0.0000] 49.81 [0.0000] 65.26 [0.0000] 51.68 [0.0000]

J-B 21512.90 [0.0000] 14851.08 [0.0000] 4562.78 [0.0000] 37401.39 [0.0000] 20906.00 [0.0000]



Fig 1: The left columns illustrate histograms of daily shipping spot freight returns 
superimposed on normal distributions. Right columns illustrate the QQ plot of returns v
normal distributions. 
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BDTI TD3: 250,000mt, Middle East Gulf to Japan

BDTI TD4: 260,000mt, West Africa to US Gulf

BDTI TD5: 130,000mt, 

BDTI TD7: 80,000mt, North Sea to Continent

BDTI TD9: 70,000mt, Caribbean to 

Fig2: Spot prices, returns and volatility. The figure shows summary plots for daily shipping spot freight rates 
data for five major dirty tanker routes: TD3, TD4, TD5, TD7 and TD9.The left, middle and right columns 
display spot freight rate prices in world scale, returns and the volatility of daily returns respectively. The 
volatility is measured using GARCH(1,1) model.
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Table 5 Estimating GARCH(1,1) models

Table 5: represents parameter estimation results for the simple GARCH(1,1), it is divided to three 
sections. First section, presents results of parameters estimated in Excel spread sheets with 
persistence restriction of less than one and without variance targeting. Second section, represents 
results of parameters estimated in Excel spread sheet with persistence restriction of less than one 
and with variance targeted in aligned with the long term variance (average). Third section 
represents results of parameters estimated using Eviews program without persistence restriction 
and variance targeting.

   

TD3 TD4 TD5 TD7 TD9

a 0.052408 0.038114 0.279692 0.052408 0.052408

b 0.946592 0.953517 0.719308 0.946592 0.946592

w 0.000015 0.000009 0.000094 0.000015 0.000015
Persistence 0.9990 0.9916 0.9990 0.9990 0.9990

MLE 3233.62 4066.21 3732.65 3571.08 3101.11

a 0.045561 0.035971 0.139633 0.514316 0.045561

b 0.948442 0.953949 0.803030 0.213238 0.948442

w 0.000016 0.000010 0.000073 0.000420 0.000016
Persistence 0.9940 0.9899 0.9427 0.7276 0.9940

MLE 3231.18 4065.85 3722.55 3708.16 3095.18

a 0.046143 [0.0000] 0.009660 [0.0000] 0.099801 [0.0000] 0.608497 [0.0000] 0.068456 [0.0000]

b 0.954752 [0.0000] 0.990091 [0.0000] 0.876969 [0.0000] 0.491809 [0.0000] 0.929821 [0.0000]

w 0.000010 [0.0000] 0.000001 [0.0000] 0.0000375 [0.0000] 0.000179 [0.0000] 0.000024 [0.0000]
Persistence 1.0009 0.9998 0.9768 1.1003 0.9983

MLE 3438.28 4221.77 3863.87 3908.37 3323.99

With Persistence Restriction and with out Variance Targeting using Excel 

 With Persistence Restriction and with Variance Targeting using Excel 

 With out Persistence Restriction and with Variance Targeting using Eviews 
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Table 6 Estimating GARCH(1,1)-with leverage effect models

Table 6: represents parameter estimation results for GJR-GARCH(1,1) and NGARCH(1,1) models in 
Excel and Eviews program, respectively. Values in [] are P-values and * represents negative values.

Table 7 Estimating NGARCH-t(d) models

Table 7: represents parameter estimation results for NGARCH-t(d) models in Eviews program, 
respectively. Values in [] are P-values.

TD3 TD4 TD5 TD7 TD9

a 0.049311869 0.052365 0.275290 0.785591 0.049312

b 0.941017606 0.929266 0.720092 0.213409 0.941018

w 1.31107E-05 0.000015 0.000093 0.000392 0.000013

q 0.419321345 0.295053 0.085083 0.000000 0.419321
Persistence 0.999 0.9862 0.9974 0.9990 0.9990

MLE 3246.00 4071.18 3734.56 3737.10 3098.57

a 0.022214 [0.0000] 0.0000362 [0.3504] 0.080107 [0.0000] 0.890718 [0.0000] 0.048864 [0.0000]

b 0.957841 [0.0000] 1.0040700 [0.0000] 0.883973 [0.0000] 0.508659 [0.0000] 0.915444 [0.0000]

w 0.000009 [0.0000] 0.0000002 [0.0000] 0.000037 [0.0000] 0.000183 [0.0000] 0.000038 [0.0000]

q 0.045119 [0.0000] 0.006350* [0.0000] 0.031753 [0.0022] 0.73046* [0.0000] 0.058399 [0.0000]

Persistence 0.9801 1.0041 0.9642 1.8746 0.9645
MLE 3453.12 3453.12 3865.37 3946.02 3327.53

Using Excel to Estimate GJR-GARCH (1,1)

Using Eviews to Estimate NGARCH(1,1)

TD3 TD4 TD5 TD7 TD9

a 0.359957 [0.0000] 0.0960[0.0000] 0.319408 [0.0000] 0.058652[0.0000] 0.30740 [0.0000]

b 0.606175 [0.0000] 0.0616[0.0000] 0.659714 [0.0000] 0.304200[0.0000] 0.492848 [0.0000]

w 0.000165 [0.0000] 0.000046[0.0000] 0.000076 [0.0000] 0.000126[0.0000] 0.000162 [0.0000]

q 0.286999 [0.0076] 0.0855[0.0076] 0.240439 [0.0057] 0.24369*[0.0000] 0.137444 [0.0498]

d 2.54 23.0 2.60 5.00 3.60
Persistence 0.9958 0.8583 0.9976 0.9255 0.8061

MLE 4028.97 4028.97 4345.94 4446.30 3863.83
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Table 8: TD3 Value at Risk Results

Table 8: Represents Value at Risk results for TD3 route, the first and other columns 
represent the different model types used to measure VaR and its corresponding results, 
respectively. The second column, third and forth column represents average, minimum and 
maximumVaR1%;VaR5%, for the estimated period, respectively. The last column represents 
the hit valuation sequence as a percentage, calculated as number of actual returns 
exceeding divided by the total number of observations for the estimated period.   

Table 9: TD4 Value at Risk Results

Table 9: Represents Value at Risk results for TD4 route, the first and other columns 
represent the different model types used to measure VaR and its corresponding results, 
respectively. The second column, third and forth column represents average, minimum 
and maximumVaR1% ;VaR5% , for the estimated period, respectively. The last column 
represents the hit valuation sequence as a percentage, calculated as number of actual 
returns exceedings divided by the total number of observations for the estimated period.   

1% 5% 1% 5% 1% 5% 1% 5%

Historical Simulation 13.15% 6.73% 8.41% 3.74% 18.80% 8.49% 0.80% 4.17%

Risk Metrics 8.96% 6.33% 2.92% 2.06% 19.84% 14.03% 1.76% 4.01%

GARCH-FHS 11.27% 6.03% 5.97% 3.20% 21.06% 13.58% 0.96% 4.17%

GJR-GARCH-FHS 11.28% 6.02% 6.47% 3.50% 19.52% 12.66% 1.12% 3.85%

NGARCH-FHS 10.79% 5.74% 6.14% 3.14% 22.46% 13.74% 0.80% 4.01%

GJR-GARCH-t(d)-FHS 11.74% 5.76% 5.51% 2.56% 42.03% 20.49% 0.96% 4.01%

NGARCH-t(d)-FHS 10.38% 5.39% 4.93% 2.37% 36.35% 21.11% 0.96% 4.17%

EVT-NGARCH-t(d) 13.66% 6.46% 6.59% 3.11% 54.86% 25.93% 0.48% 3.37%

Normal 9.77% 6.91% 4.91% 3.47% 41.94% 29.65% 1.60% 2.72%

t-Student 13.48% 5.65% 6.78% 2.84% 57.85% 24.25% 0.48% 4.17%

Cornish-Fisher 39.10% 5.88% 19.66% 2.96% 167.76% 25.23% 0.00% 4.01%

Minimum VaRAverage VaR Hit SequenceMaximum VaRModel

1% 5% 1% 5% 1% 5% 1% 5%

Historical Simulation 11.85% 5.19% 6.80% 4.25% 15.70% 6.04% 0.96% 4.49%

Risk Metrics 8.55% 6.05% 4.40% 3.11% 19.75% 13.96% 2.72% 4.49%

GARCH-FHS 12.48% 5.34% 6.65% 2.78% 22.66% 11.23% 0.64% 5.45%

GJR-GARCH-FHS 16.04% 6.90% 8.84% 5.36% 23.57% 8.86% 0.32% 2.40%

NGARCH-FHS 12.13% 5.36% 5.35% 2.65% 25.96% 12.22% 0.64% 5.13%

GJR-GARCH-t(d)-FHS 12.74% 5.75% 5.27% 2.83% 37.92% 16.64% 0.64% 4.49%

NGARCH-t(d)-FHS 12.61% 5.69% 5.20% 2.80% 37.35% 16.71% 0.64% 4.65%

EVT-NGARCH-t(d) 11.13% 5.11% 5.75% 2.81% 35.72% 16.26% 1.28% 6.25%

Normal 6.23% 4.41% 3.43% 2.43% 19.84% 14.03% 4.33% 7.85%

t-Student 10.36% 4.34% 5.70% 2.39% 32.96% 13.82% 1.28% 8.01%

Cornish-Fisher 15.76% 4.42% 8.68% 2.44% 50.16% 14.07% 0.32% 7.85%

Model Average VaR Minimum VaR Maximum VaR Hit Sequence
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Table 10: TD5 Value at Risk Results

Table 10: Represents Value at Risk results for TD5 route, the first and other columns 
represent the different model types used to measure VaR and its corresponding results, 
respectively. The second column, third and forth column represents average, minimum 
and maximumVaR1% ;VaR5% , for the estimated period, respectively. The last column 
represents the hit valuation sequence as a percentage, calculated as number of actual 
returns exceedings divided by the total number of observations for the estimated period.   

Table 11: TD7 Value at Risk Results

Table 11: Represents Value at Risk results for TD7 route, the first and other columns 
represent the different model types used to measure VaR and its corresponding results, 
respectively. The second column, third and forth column represents average, minimum 
and maximumVaR1% ;VaR5% , for the estimated period, respectively. The last column 
represents the hit valuation sequence as a percentage, calculated as number of actual 
returns exceedings divided by the total number of observations for the estimated period.   

1% 5% 1% 5% 1% 5% 1% 5%

Historical Simulation 13.88% 7.42% 10.86% 5.95% 15.47% 9.08% 1.12% 4.97%

Risk Metrics 10.96% 7.75% 5.26% 3.72% 20.22% 14.30% 1.60% 4.97%

GARCH-FHS 13.56% 7.80% 5.07% 3.18% 30.09% 17.46% 1.12% 4.81%

GJR-GARCH-FHS 13.44% 7.70% 5.36% 3.41% 28.69% 16.34% 0.96% 4.97%

NGARCH-FHS 13.44% 8.16% 4.59% 3.26% 41.41% 24.88% 1.12% 4.33%

GJR-GARCH-t(d)-FHS 13.83% 8.33% 4.12% 2.70% 50.13% 29.48% 0.96% 4.65%

NGARCH-t(d)-FHS 13.09% 7.97% 4.09% 2.65% 43.93% 26.43% 0.96% 4.65%

EVT-NGARCH-t(d) 14.46% 7.63% 4.82% 2.54% 44.22% 23.34% 0.80% 5.45%

Normal 10.69% 7.56% 3.75% 2.65% 33.93% 23.99% 1.76% 5.13%

t-Student 14.74% 6.18% 5.18% 2.17% 46.80% 19.62% 0.64% 7.37%

Cornish-Fisher 22.20% 8.50% 7.80% 2.99% 70.50% 26.99% 0.16% 3.53%

Model Average VaR Minimum VaR Maximum VaR Hit Sequence

1% 5% 1% 5% 1% 5% 1% 5%

Historical Simulation 15.51% 8.06% 10.88% 5.80% 17.80% 10.46% 1.44% 5.93%

Risk Metrics 13.61% 9.62% 4.49% 3.17% 38.38% 27.14% 2.24% 4.65%

GARCH-FHS 18.82% 8.49% 7.90% 3.57% 172.37% 78.90% 1.76% 6.89%

GJR-GARCH-FHS 25.22% 10.22% 7.18% 3.43% 196.16% 90.12% 1.44% 4.97%

NGARCH-FHS 19.28% 8.86% 7.43% 3.17% 192.10% 85.64% 1.12% 5.13%

GJR-GARCH-t(d)-FHS 11.74% 5.76% 5.51% 2.56% 42.03% 20.49% 0.96% 4.01%

NGARCH-t(d)-FHS 24.15% 9.79% 6.10% 2.66% 233.98% 86.65% 1.12% 5.13%

EVT-NGARCH-t(d) 21.05% 8.88% 6.09% 2.57% 180.39% 76.10% 1.44% 6.41%

Normal 10.57% 7.47% 3.16% 2.23% 87.56% 61.91% 4.33% 8.65%

t-Student 11.84% 7.09% 3.54% 2.12% 98.10% 58.75% 3.85% 9.46%

Cornish-Fisher 20.71% 6.25% 6.19% 1.87% 171.53% 51.80% 1.76% 11.38%

Model Average VaR Minimum VaR Maximum VaR Hit Sequence
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Table 12: TD9 Value at Risk Results

Table 12: Represents Value at Risk results for TD9 route, the first and other columns 
represent the different model types used to measure VaR and its corresponding results, 
respectively. The second column, third and forth column represents average, minimum 
and maximumVaR1% ;VaR5% , for the estimated period, respectively. The last column 
represents the hit valuation sequence as a percentage, calculated as number of actual 
returns exceedings divided by the total number of observations for the estimated period.   

1% 5% 1% 5% 1% 5% 1% 5%

Historical Simulation 17.58% 9.01% 10.83% 6.52% 27.52% 11.28% 1.28% 4.01%

Risk Metrics 13.83% 9.78% 5.74% 4.06% 35.07% 24.80% 1.76% 4.81%

GARCH-FHS 20.16% 9.33% 8.82% 4.78% 67.87% 22.87% 1.12% 5.29%

GJR-GARCH-FHS 19.40% 9.40% 8.67% 4.77% 73.39% 26.10% 1.12% 5.29%

NGARCH-FHS 19.36% 9.21% 8.25% 4.38% 64.24% 21.81% 1.12% 5.13%

GJR-GARCH-t(d)-FHS 11.74% 5.76% 5.51% 2.56% 42.03% 20.49% 0.96% 4.01%

NGARCH-t(d)-FHS 21.45% 10.35% 5.20% 3.52% 121.02% 66.24% 1.60% 5.13%

EVT-NGARCH-t(d) 20.29% 10.16% 8.15% 4.08% 117.84% 59.00% 1.44% 4.97%

Normal 10.13% 7.16% 4.25% 3.01% 59.10% 41.79% 4.81% 8.01%

t-Student 16.83% 7.06% 7.06% 2.96% 98.19% 41.17% 1.60% 8.17%

Cornish-Fisher 28.83% 4.65% 12.10% 1.95% 168.17% 27.14% 0.48% 15.06%

Model Average VaR Minimum VaR Maximum VaR Hit Sequence
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Table 13: Back Testing Value at Risk Modules

Table 13: Represents statistical tests of unconditional, independent and conditional coverage of the interval forecasts under each approach 
for the five routs under investigation, denoted by LRuc, LRind and LRcc, respectively. *, ** and *** denote significance at 10%, 5% and 1%
level, respectively. More detailed tables of the tests are available in the appendix. The tests for LRuc and LRind are x11% and x15% for 1% VaR 
and 5% VaR, respectively. The tests for LRcc are x21% and x25% for 1% VaR and 5% VaR, respectively. Critical values for x11% , x15%, x110%x21%x25%x210%are 6.63, 3.84, 2.7, 9.21, 5.99 and 4.6, respectively. If value of the likelihood ratio is larger than the critical value the 
Value at Risk model is rejected at the significance level.

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

LRuc 0.267 0.965 2.989* 1.388 0.088 0.965 0.090 1.894 0.010 1.388 0.088 1.388 0.088 0.965 0.938 3.947**

LRind -4.923 21.05*** -6.307 11.68*** -5.583 10.63*** -5.583 7.87*** -5.290 6.99*** -5.583 -6.310 -5.583 -3.806 -4.447 -6.578

LRcc -4.656 22.02*** -3.318 13.01*** -5.496 11.59*** -5.493 9.76*** -5.280 8.376** -5.496 -4.922 -5.496 -2.841 -3.509 -2.631

LRuc 0.088 0.357 12.74*** 0.357 0.271 0.257 2.113 9.46*** 0.271 0.021 0.271 0.357 0.271 0.160 0.466 1.935

LRind -5.583 8.71*** -6.654 1.064 -4.923 11.49*** -3.790 -6.641 -4.923 2.068 -4.923 -4.243 -4.923 1.697 2.9702* 4.4125**

LRcc -5.496 9.069** 6.090** 1.421 -4.652 11.75*** -1.677 2.826 -4.652 2.090 -4.652 -3.886 -4.652 1.857 3.436 6.347**

LRuc 0.455 0.001 1.947 0.001 0.090 0.049 0.009 0.001 0.455 0.622 0.088 0.167 0.088 0.167 0.010 0.257

LRind -5.821 6.203** 2.128 -2.898 0.870 3.274* -5.290 -0.401 -5.821 -4.036 -5.583 -5.872 -5.583 -5.748 -5.290 -5.068

LRcc -5.366 6.204** 4.076 -2.896 0.960 3.323 -5.281 -0.399 -5.366 -3.413 -5.496 -5.705 -5.496 -5.581 -5.280 -4.811

LRuc 1.935 1.074 7.20*** 0.167 4.209** 4.223** 1.935 0.001 0.455 0.021 0.455 0.049 0.455 0.021 1.935 2.408

LRind 2.131 5.325** -6.562 0.543 -6.414 27.01*** 2.131 1.227 -5.821 -5.439 -5.821 -5.737 -5.821 -3.172 2.131 0.721

LRcc 4.066 6.399** 0.642 0.710 -2.205 31.24*** 4.066 1.227 -5.366 -5.417 -5.366 -5.688 -5.366 -3.151 4.066 3.129

LRuc 1.085 1.388 4.209** 0.045 0.455 0.107 0.455 0.107 0.455 0.021 1.923 0.021 2.9734* 0.021 1.923 0.001

LRind 2.521 2.8422* -6.414 0.213 -5.821 -3.424 -5.821 -4.976 -5.821 -3.172 -6.176 -5.744 -6.308 -5.744 -6.176 -5.759

LRcc 3.606 4.230 -2.205 0.258 -5.366 -3.317 -5.366 -4.869 -5.366 -3.151 -4.254 -5.722 -3.334 -5.722 -4.254 -5.758

TD7

TD5

HS Risk Metrics GJR-GARCH-t(d)-FHS NGARCH-t(d)-FHS EVT-NGARCH-t(d)

TD3

GARCH-FHS GJR-GARCH-FHS NGARCH-FHS

TD9

TD4



5 Appendix A: Calculating autocorrelation of raw returns, squared returns 
and standardized squared returns

Fig18 represents autocorrelation for TD3 routs

Fg19 represents autocorrelation for TD4 routs

Fig20 represents autocorrelation for 

Fig21 represents autocorrelation for TD7 routs

Fig22 represents autocorrelation for TD9 routs

These graphs represents autocorrelation
GARCH(1,1)  NGARCH and NGARCH-
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and standardized squared returns

Fig18 represents autocorrelation for TD3 routs

g19 represents autocorrelation for TD4 routs

Fig20 represents autocorrelation for TD5 routs

Fig21 represents autocorrelation for TD7 routs

Fig22 represents autocorrelation for TD9 routs

autocorrelation of return square VS autocorrelation of standardized returns
-t(d) models, respectively.

: Calculating autocorrelation of raw returns, squared returns 

of return square VS autocorrelation of standardized returns plots for 



6 Appendix B: QQ Plots

    

   

  

  

  

These graphs represents QQ-Plot for Standardized Returns vs. Normal Distribution
Returns vs. Student's t distribution and 
investigation.
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: QQ Plots

Fig 23 QQ plots for TD

  
Fig 24 QQ plots for TD4

  

Fig 25 QQ plots for TD5

  

Fig 26 QQ plots for TD7

  

Fig 27 QQ plots for TD9

  

ot for Standardized Returns vs. Normal Distribution, QQ
and EVT QQ Plot for Largest Losses, respectively. For the five routs under 

QQ-Plot for Standardized 
, respectively. For the five routs under 
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