DYNAMIC MODELLING APPROACHES AND EMPIRICAL EVIDENCE

Joyce M Dargay Transport Studies Unit University of Oxford

Why Dynamic Modelling?

Response to changes in transport supply, prices, policy and socio-economic factors is not instantaneous but occurs over time

Adjustment possibilities limited in the short run

- costs of adjustment
- imperfect information & expectations
- current circumstances & commitments
- habit & resistance to change
- Greater flexibility in the long run, so the response will build up over time

Long-run effects > short-run effects

Advantages of Dynamic Modelling

- describes changes in travel behaviour
- captures both short- & long-run relationships
- · gives information about the time scale of effects
- can analyse effects of factors which vary little at one point in time e.g. prices
- can accommodate asymmetry, the influence of habit, or expectations

Dynamic Modelling Approaches

Basic requirements:

- model must relate current demand to past or future values of explanatory variables
- Commonly used models:
- Partial adjustment model: relates demand to explanatory variables and demand in previous period
- Error-correction model: relates change in demand to changes in explanatory variables and levels of all variables in previous period

Partial Adjustment Model
Long-run (desired) demand: $Q_t^* = \beta X_t$
Assume: a proportion (δ) of the difference between actual and desired demand is closed each period
$Q_t - Q_{t-1} = \delta (Q_t^* - Q_{t-1})$
Solving for \mathbf{Q}_{t} and substituting for long-run demand
$Q_{t} = \delta\beta X_{t} + (1 - \delta) Q_{t-1}$
Short-run effect $\delta\beta$

β

Long-run effect

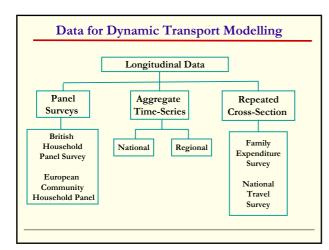
Error Correction ModelLong-run demand: $Q_i^* = \beta X_i$ Assume: change in Q depends on change in X (impact
effect) and the deviation from equilibrium in the
previous period (error correction mechanism) $Q_i - Q_{i-1} = \gamma(X_i - X_{i-1}) + \phi(Q_{i-1} - Q_{i-1}^*)$ Substituting for long-run demand
 $Q_i - Q_{i-1} = \gamma(X_i - X_{i-1}) + \phi Q_{i-1} - \phi \beta X_{i-1})$ Short-run effect

β

Long-run effect

Choice of Model

Partial adjustment model:


- requires stationary variables, otherwise estimates inconsistent
- the response to all variables has the same lag structure

Error correction model:

• does not require stationary variables

• more general lag structure

In many cases, little difference between PAM & ECM

Empirical Evidence

Aggregate time-series (pooled cs-ts data) demand for local bus services Repeated cross-section data (pseudo-panel)

car ownership Panel data

choice of commuting mode

Local Bus Travel - Data

STATS100A - bus operator data provided to DfT

- vehicle miles, passenger journeys & receipts
- aggregated into 46 English counties
- 10 years: 1987 to 1996

Regional Statistics

- population
- disposable income
- National Statistics
 - motoring costs
 - retail prices

Local Bus Travel: Model

- Pooled cross-section time-series model
- Dependent variable: bus journeys per capita
- Independent variables: income per capita service: bus kms per capita bus fare: passenger receipts per journey motoring costs
- Dynamics
 - PAM (ECM also used, results similar)
- County specific fixed effects

	SR	LI	
Income	-0.39	-0.8	
Fare	-0.33	-0.6	
Motoring costs	0.32	0.6	
Service (VKm)	0.49	1.0	
Time for 95% of LR effect	4.5 years		

Car Ownership - Data

Family Expenditure Survey

- cars, socio-economic & demographic variables
- 14 years: 1982 to 1995
- 16 cohorts by year of birth of household head in 5-year bands

National Statistics

- car purchase costs
- car running costs
- public transport fares
- retail prices

Car Ownership: Model

- Pseudo-panel model
- Dependent variable: cars per HH (cohort mean)
- Independent variables: household income (cohort mean) number of adults & children (cohort mean) % in rural/urban areas (cohort mean) car purchase & running costs public transport fares
- Dynamics: PAM
- Weighting: observations in each cohort-year
- Random effects & autocorrelated errors

elasticities calculated at middle income			
	SR	LF	
Income	0.24	0.65	
Car purchase costs	-0.12	-0.33	
Car running costs	-0.19	-0.51	
Public transport fares(VKm)	(0.09)	(0.24)	
Time for 95% of LR effect	6.3 years		

Commuting Mode - Data

British Household Panel Survey

- individuals who travel to work in at least 2 consecutive years
- 11 years: 1991 to 2001
- over 37000 observations
- 10000 individuals
- average of 4 years per individual

National Statistics

- car purchase prices
- fuel prices
- retail prices

Commuting Mode: Model

- Binary Probit model
- Dependent variable = 1 if car; = 0 otherwise
- Independent variables: socio-economic & geographic company car
- car purchase costs & motor-fuel prices • Differences between men & women
- Dynamics (state dependence)
- lagged dependent variable
- Unobserved heterogeneity random effects for individuals
- Correction for attrition

change in probability of commuting by car given a 1 % change in variable			
	SR	L	
Income	0.03	0.0	
Car purchase costs	-0.20	-0.4	
Fuel price	-0.21	-0.5	
Time for 95% of LR effect	6 years		

EIT - Economía de las Infraestructuras y del Transporte - ULPGC

Conclusions

- Significant dynamic effects in all empirical studies
- Long-run elasticity more than 2x short-run
 Adjustment is slow: 95% of total effect takes between 4 and 6 years
- Use of static elasticity will either under- or overestimate effects of changes in prices etc at a given point in time
- Forecasts based on static demand model will be inaccurate

References

Commuting mode

J Dargay: The journey to work: an analysis of mode choice based on panel data, paper presented at the European Transport Conference, Strasbourg, France, October, 2005. Bus Travel

J Dargay & M Hanly: The Demand for Local Bus Services in England, *Journal of Transport Economics and Policy*, Volume 36, Part 1, January, pp. 73-91, 2002.

Car ownership

J Dargay & P Vythoulkas: Estimation of Dynamic Car Ownership Model: A Pseudo-panel Approach, *Journal of Transport Economics and Policy*, 33(3) pp. 283-302, 1999.