

Outline

- Motivations for dynamic analysis
- Travel behaviour dynamics
- London congestion charging panel survey
- Crawley panel survey

Static versus dynamic modelling

- Conventional static modelling assumes travel demand moves from one state to another
- Dynamic methods of analysis (based on longitudinal data) required to model transition process

Recognise time as a dimension

Require longitudinal data

$$D_t = f(X_{t'}, X_{t-1}, ..., X_{t-N}, D_{t-1}, ..., D_{t-M})$$

D = demand (e.g. bus journeys) X= explanatory variables (e.g. bus fares) The t, t-1, ... subscripts show model is dynamic

Examples of dynamic models

- Behavioural relationships

 - Mode choice models (Bradley, 1997)
 HOV lane attitudes and usage (Golob et al, 1997)
 Timing of toll road switching (Hensher, 1997)
 Modal commitment and use (Simma & Axhausen, 2002)
 Car ownership and commute mode (Dargay & Hanly, 2004)

- Modelling systems
 MASTER & MIDAS dynamic microsimulation models (Mackett, 1990 / Goulias & Kitamura, 1992)
 Dynamic Urban Model systems dynamics model (Swanson, 2004)

Motivations for dynamic analysis

Policy

- Paths of change
- Disentangling cause and effect
- Timing and sequencing
- Winners and losers

Statistical

- Handling bias due to omitted factors
- Recognising influence of past history
- Based on direct measurements of change

- Time to become aware of a change in the environment and to acquire and process information about it.
- Experimentation with alternative behaviours
- Gradual modification of behaviour towards preferred behaviour
- Long-term commitments towards existing travel behaviour
 A new travel option may only be used after a positive attitude towards the option is developed
- attitude towards the option is developed
 Habit may prevent any conscious deliberation about behaviour

Need for greater understanding of these and to recognise these in models

Our understanding of travel behaviour dynamics is weak

Conceptual understanding

- Theory of Interpersonal Behaviour (habit)
- Drivers' decision making process (information & learning)
- Empirical evidence
 - Day-to-day and year-to-year travel choices
 - Intermediate time-scales rare
 - Before-and-after studies often conducted but multiple after periods needed to provide more insight

Need for more detailed tracking of behaviour after interventions

Congestion Charging panel survey – some results

- 48 out of 343 car drivers expected to change mode for selected activity
- 36 out of 343 car drivers actually changed mode for selected activity, <u>but only 11 of these had expected</u> to
- This demonstrates limitations of stated preference surveys
- Analysis to be carried out exploring what factors influenced car drivers to change mode but there are limits on what can be learnt from this survey

Project stages

- 1. Identification of modelling requirements.

√

- 3. Development of dynamic relationships of travel behaviour from longitudinal data.
- 4. Application of dynamic relationships of travel behaviour in the Dynamic Urban Model system.
- 5. Preparation of guidelines on incorporating dynamics in travel demand models.

